数据结构之十大经典排序算法汇总


前言

本文整理并总结了十大较经典的排序算法(冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、计数排序、基数排序、桶排序、堆排序)的时间复杂度、空间复杂度等性质。其中实现方法不唯一,仅供参考。

性能汇总

算法 最好 最坏 平均 空间 稳定性 是否基于比较
冒泡排序 O(n) O(n2) O(n2) O(1)
选择排序 O(n2) O(n2) O(n2) O(1) ×
插入排序 O(n) O(n2) O(n2) O(1)
快速排序 O(nlogn) O(n2) O(nlogn) O(logn)~O(n) ×
归并排序 O(nlogn) O(nlogn) O(nlogn) O(n)
希尔排序 O(n1.3) O(n2) O(logn)~O(n2) O(1) ×
计数排序 O(n+k) O(n+k) O(n+k) O(n+k) ×
基数排序 O(nk) O(nk) O(nk) O(n+k) ×
桶排序 O(n) O(n) O(n) O(n+m) ×
堆排序 O(nlogn) O(nlogn) O(nlogn) O(1) ×
  • 若显示有问题,则可参考下方汇总图

十大经典排序算法汇总图

1、冒泡排序(Bubble Sort)

①、基本思想:两个数比较大小,较大的数下沉,较小的数冒起来。

②、算法描述

比较相邻的元素。如果第一个比第二个大,就交换它们两个;
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
针对所有的元素重复以上的步骤,除了最后一个;
重复步骤1~3,直到排序完成。

③、代码实现

 public static int[] bubbleSort(int[] array) {
      if (array.length == 0)
          return array;
      for (int i = 0; i < array.length-1; i++)
          for (int j = 0; j < array.length - 1 - i; j++)
              if (array[j + 1] < array[j]) {
                  int temp = array[j + 1];
                  array[j + 1] = array[j];
                  array[j] = temp;
              }
      return array;
  }

2、选择排序(Selection Sort)

①、基本思想:选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

②、算法描述:(n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。)

初始状态:无序区为R[1..n],有序区为空;
第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
n-1趟结束,数组有序化了。

③、代码实现

public static int[] selectionSort(int[] array) {
        if (array.length == 0)
             return array;
        for (int i = 0; i < array.length; i++) {
            int minIndex = i;
            for (int j = i; j < array.length; j++) {
                if (array[j] < array[minIndex]) //找到最小的数
                    minIndex = j; //将最小数的索引保存
            }
            int temp = array[minIndex];
            array[minIndex] = array[i];
            array[i] = temp;
        }
        return array;
    }

3、插入排序(Insertion Sort)

①、基本思想:在要排序的一组数中,假定前n-1个数已经排好序,现在将第n个数插到前面的有序数列中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。

②、算法描述

从第一个元素开始,该元素可以认为已经被排序;
取出下一个元素,在已经排序的元素序列中从后向前扫描;
如果该元素(已排序)大于新元素,将该元素移到下一位置;
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
将新元素插入到该位置后;
重复步骤2~5。

③、代码实现

public static int[] insertionSort(int[] array) {
        if (array.length == 0)
            return array;
        int current;
        for (int i = 0; i < array.length - 1; i++) {
            current = array[i + 1];
            int preIndex = i;
            while (preIndex >= 0 && current < array[preIndex]) {
                array[preIndex + 1] = array[preIndex];
                preIndex--;
            }
            array[preIndex + 1] = current;
        }
        return array;
    }

4、希尔排序(Shell Sort)

①、基本思想:希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序,同时该算法是冲破O(n2)的第一批算法之一。它与插入排序的不同之处在于,它会优先比较距离较远的元素。

②、算法描述

选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
按增量序列个数k,对序列进行k 趟排序;
每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

③、代码实现

 public static int[] ShellSort(int[] array) {
        int len = array.length;
        int temp, gap = len / 2;
        while (gap > 0) {
            for (int i = gap; i < len; i++) {
                temp = array[i];
                int preIndex = i - gap;
                while (preIndex >= 0 && array[preIndex] > temp) {
                    array[preIndex + gap] = array[preIndex];
                    preIndex -= gap;
                }
                array[preIndex + gap] = temp;
            }
            gap /= 2;
        }
        return array;
    }

5、归并排序(Merge Sort)

①、基本思想

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

②、算法描述

把长度为n的输入序列分成两个长度为n/2的子序列;
对这两个子序列分别采用归并排序;
将两个排序好的子序列合并成一个最终的排序序列。

③、代码实现

/**
 * 归并排序
 * @param array
 * @return
 */
public static int[] MergeSort(int[] array) {
    if (array.length < 2) return array;
    int mid = array.length / 2;
    int[] left = Arrays.copyOfRange(array, 0, mid);
    int[] right = Arrays.copyOfRange(array, mid, array.length);
    return merge(MergeSort(left), MergeSort(right));
}
/**
 * 归并排序——将两段排序好的数组结合成一个排序数组
 * @param left
 * @param right
 * @return
 */
public static int[] merge(int[] left, int[] right) {
    int[] result = new int[left.length + right.length];
    for (int index = 0, i = 0, j = 0; index < result.length; index++) {
        if (i >= left.length)
            result[index] = right[j++];
        else if (j >= right.length)
            result[index] = left[i++];
        else if (left[i] > right[j])
            result[index] = right[j++];
        else
            result[index] = left[i++];
    }
    return result;
}

6、快速排序(Quick Sort)

①、基本思想(分治):

通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

②、算法描述:快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

从数列中挑出一个元素,称为 “基准”(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

③、代码实现

  public static void quickSort(int[] arr, int L, int R) {
        int i = L;
        int j = R;
        //支点
        int pivot = arr[(L + R) / 2];
        //左右两端进行扫描,只要两端还没有交替,就一直扫描
        while (i <= j) {
            //寻找直到比支点大的数
            while (pivot > arr[i])
                i++;
            //寻找直到比支点小的数
            while (pivot < arr[j])
                j--;
            //此时已经分别找到了比支点小的数(右边)、比支点大的数(左边),它们进行交换
            if (i <= j) {
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
                i++;
                j--;
            }
        }
        //上面一个while保证了第一趟排序支点的左边比支点小,支点的右边比支点大了。

        //“左边”再做排序,直到左边剩下一个数(递归出口)
        if (L < j)
            quickSort(arr, L, j);
        //“右边”再做排序,直到右边剩下一个数(递归出口)
        if (i < R)
            quickSort(arr, i, R);
    }

7、堆排序(Heap Sort)

①、基本思想:堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

②、算法描述

将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
③、代码实现

static int len;
    /**
     * 堆排序算法
     *
     * @param array
     * @return
     */
    public static int[] HeapSort(int[] array) {
        len = array.length;
        if (len < 1) return array;
        //1.构建一个最大堆
        buildMaxHeap(array);
        //2.循环将堆首位(最大值)与末位交换,然后在重新调整最大堆
        while (len > 0) {
            swap(array, 0, len - 1);
            len--;
            adjustHeap(array, 0);
        }
        return array;
    }
    /**
     * 建立最大堆
     *
     * @param array
     */
    public static void buildMaxHeap(int[] array) {
        //从最后一个非叶子节点开始向上构造最大堆
        for (int i = (len/2 - 1); i >= 0; i--) { 
            adjustHeap(array, i);
        }
    }
    /**
     * 调整使之成为最大堆
     *
     * @param array
     * @param i
     */
    public static void adjustHeap(int[] array, int i) {
        int maxIndex = i;
        //如果有左子树,且左子树大于父节点,则将最大指针指向左子树
        if (i * 2 < len && array[i * 2] > array[maxIndex])
            maxIndex = i * 2;
        //如果有右子树,且右子树大于父节点,则将最大指针指向右子树
        if (i * 2 + 1 < len && array[i * 2 + 1] > array[maxIndex])
            maxIndex = i * 2 + 1;
        //如果父节点不是最大值,则将父节点与最大值交换,并且递归调整与父节点交换的位置。
        if (maxIndex != i) {
            swap(array, maxIndex, i);
            adjustHeap(array, maxIndex);
        }
    }

8、计数排序(Counting Sort)

①、基本思想:计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

②、算法描述

找出待排序的数组中最大和最小的元素;
统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

③、代码实现


    public static int[] CountingSort(int[] array) {
        if (array.length == 0) return array;
        int bias, min = array[0], max = array[0];
        for (int i = 1; i < array.length; i++) {
            if (array[i] > max)
                max = array[i];
            if (array[i] < min)
                min = array[i];
        }
        bias = 0 - min;
        int[] bucket = new int[max - min + 1];
        Arrays.fill(bucket, 0);
        for (int i = 0; i < array.length; i++) {
            bucket[array[i] + bias]++;
        }
        int index = 0, i = 0;
        while (index < array.length) {
            if (bucket[i] != 0) {
                array[index] = i - bias;
                bucket[i]--;
                index++;
            } else
                i++;
        }
        return array;
    }

9、桶排序(Bucket Sort)

①、基本思想

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。

②、算法描述

设置一个定量的数组当作空桶;
遍历输入数据,并且把数据一个一个放到对应的桶里去;
对每个不是空的桶进行排序;
从不是空的桶里把排好序的数据拼接起来。
③、图片演示

桶排序

④、代码实现

public static void bucketSort(int[] arr){

    // 计算最大值与最小值
    int max = Integer.MIN_VALUE;
    int min = Integer.MAX_VALUE;
    for(int i = 0; i < arr.length; i++){
        max = Math.max(max, arr[i]);
        min = Math.min(min, arr[i]);
    }

    // 计算桶的数量
    int bucketNum = (max - min) / arr.length + 1;
    ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketNum);
    for(int i = 0; i < bucketNum; i++){
        bucketArr.add(new ArrayList<Integer>());
    }

    // 将每个元素放入桶
    for(int i = 0; i < arr.length; i++){
        int num = (arr[i] - min) / (arr.length);
        bucketArr.get(num).add(arr[i]);
    }

    // 对每个桶进行排序
    for(int i = 0; i < bucketArr.size(); i++){
        Collections.sort(bucketArr.get(i));
    }

    // 将桶中的元素赋值到原序列
    int index = 0;
    for(int i = 0; i < bucketArr.size(); i++){
        for(int j = 0; j < bucketArr.get(i).size(); j++){
            arr[index++] = bucketArr.get(i).get(j);
        }
    }  
}

10、基数排序(Radix Sort)

①、基本思想

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

②、算法描述

取得数组中的最大数,并取得位数;
arr为原始数组,从最低位开始取每个位组成radix数组;
对radix进行计数排序(利用计数排序适用于小范围数的特点);

③、代码实现

 public static void radixSort(int[] arrays) {

         if (arrays == null || arrays.length < 2)
            return arrays;
        // 1.先算出最大数的位数;
        int max = arrays[0];
        for (int i = 1; i < arrays.length; i++) {
            max = Math.max(max, arrays[i]);
        }
        //需要遍历的次数由数组最大值的位数来决定
        for (int i = 1; max / i > 0; i = i * 10) {

            int[][] buckets = new int[arrays.length][10];

            //获取每一位数字(个、十、百、千位...分配到桶子里)
            for (int j = 0; j < arrays.length; j++) {

                int num = (arrays[j] / i) % 10;

                //将其放入桶子里
                buckets[j][num] = arrays[j];
            }

            //回收桶子里的元素
            int k = 0;

            //有10个桶子
            for (int j = 0; j < 10; j++) {
                //对每个桶子里的元素进行回收
                for (int l = 0; l < arrays.length ; l++) {
                    //如果桶子里面有元素就回收(数据初始化会为0)
                    if (buckets[l][j] != 0) {
                        arrays[k++] = buckets[l][j];

                    }

                }

            }

        }
    }

文章作者: jackey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 jackey !
评论
  目录